Identification of an Experimental Process by B-spline Neural Network Using Improved Differential Evolution Training
نویسندگان
چکیده
B-spline neural network (BSNN), a type of basis function neural network, is trained by gradient-based methods, which may fall into local minimum during the learning procedure. To overcome the problems encountered by the conventional learning methods, differential evolution (DE) an evolutionary computation methodology can provide a stochastic search to adjust the control points of a BSNN are proposed. DE incorporates an efficient way of self-adapting mutation using small populations. The potentialities of DE are its simple structure, easy use, convergence property, quality of solution and robustness. In this paper, we propose a modified DE using chaotic sequence based on logistic map to train a BSNN. The numerical results presented here indicate that the chaotic DE is effective in building a good BSNN model for nonlinear identification of an experimental nonlinear yo-yo motion control system.
منابع مشابه
B-spline neural network design using improved differential evolution for identification of an experimental nonlinear process
B-Spline Neural Network (BSNN), a type of basis function neural network, is trained by gradient-based methods which may fall into local minima during the learning procedure. To overcome the limitations encountered by gradient-based optimization methods, we propose differential evolution (DE) – an evolutionary computation methodology – which can provide a stochastic search to adjust the control ...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملAn Improved Fuzzy Neural Network for Solving Uncertainty in Pattern Classification and Identification
Dealing with uncertainty is one of the most critical problems in complicatedpattern recognition subjects. In this paper, we modify the structure of a useful UnsupervisedFuzzy Neural Network (UFNN) of Kwan and Cai, and compose a new FNN with 6 types offuzzy neurons and its associated self organizing supervised learning algorithm. Thisimproved five-layer feed forward Supervised Fuzzy Neural Netwo...
متن کاملOptimal Design of Hierarchical B-Spline Networks for Nonlinear System Identification
Hierarchical B-spline networks consist of multiple B-spline networks assembled in different level or cascade architecture. To identify the hierarchical B-spline networks and select important input features for each sub-B-spline network automatically, a predefined instruction/operator set was used. The structures of hierarchical B-spline networks were created and evolved by using Probabilistic I...
متن کاملImage Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution
In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006